CHEMISTRY

(Honours)

Paper: CHE-HC-1016

(Inorganic Chemistry-I)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×7=7
 - (a) Maximum number of electron possible in N shell of an atom of an element is
 - (i) 18

(ii) 8

(iii) 28

- (iv) 32
- (b) Physically meaningful quantity is given by
 - (i) only w
 - (ii) only ψ^2
 - (iii) both ψ and ψ^2
 - (iv) none of ψ and ψ^2

20A/595

CO malecule and analysis of

MILITAL WAR

(Turn Over)

- (c) In the long form of modern periodic table, element 49 has the position at
 - (i) group 12 of 4th period
 - (ii) group 13 of 5th period
 - (iii) group 13 of 4th period
 - (iv) group 15 of 4th period
- (d) The radii of Mg²⁺ and O²⁻ ions are 0.66 Å and 1.40 Å, and that of B³⁺ and O²⁻ ions are 0.23 Å and 1.40 Å respectively. The crystals formed by MgO and B₂O₃ have shapes respectively
 - (i) octahedral and trigonal planar
 - (ii) tetrahedral and octahedral
 - (iii) octahedral and cubic
 - (iv) trigonal planar and octahedral
- (e) The van der Waals' forces active in solid I₂ are
 - (i) ion-dipole forces
 - (ii) dipole-dipole interactions
 - (iii) induced dipole interactions
 - (iv) zero

(f) The half-cell reaction of two redox systems are as follows:

$$2 \text{Hg}^{2+} + 2e^{-} \rightleftharpoons \text{Hg}_{2}^{2+}, \ E_{\text{el}}^{\circ} = +0.92$$

 $\text{Sn}^{4+} + 2e^{-} \rightleftharpoons \text{Sn}^{2+}, \ E_{\text{el}}^{\circ} = +0.15$

If the two half cells are linked to give a cell, then

- (i) Hg₂²⁺ will be oxidized and Sn⁴⁺ will be reduced
- (ii) Hg²⁺ will be reduced and Sn²⁺ will be oxidized
- (iii) both Hg²⁺ and Sn²⁺ will be oxidized
- (iv) both Hg²⁺ and Sn²⁺ will be reduced
- (g) When you prepare KMnO₄ and H₂C₂O₄·2H₂O solution by transferring a measured amount of these from chemical balance, then it is necessary to standardize
 - (i) both KMnO₄ and H₂C₂O₄·2H₂O solution
 - (ii) only H₂C₂O₄·2H₂O solution, but not KMnO₄
 - (iii) only $KMnO_4$, but not $H_2C_2O_4 \cdot 2H_2O$ solution
 - (iv) none of KMnO₄ and H₂C₂O₄·2H₂O solution

2.	Answer	the	following	questions	id and and	2×4=8
----	--------	-----	-----------	-----------	------------	-------

- (a) Deduce de Broglie equation of waveparticle duality.
- (b) Write Born-Landé equation with meaning of all the terms involved. From this equation, predict which of CaO and Al₂(SO₄)₃ has higher lattice energy.
- (c) Define the terms 'bond moment' and 'dipole moment'. Taking an example, explain that bond moment in a molecule does not lead to a non-zero dipole moment in the molecule.
- (d) Isolate the equation in acidic medium MnO₄⁻+I⁻→I₂+Mn²⁺ into oxidized half reaction and reduced half reaction and balance the two parts separately and write down the overall balanced reaction.

3. Answer the following questions: $5 \times 3 = 15$

(a) Find an expression for energy of hydrogen atom. Write the Schrödinger's wave equation for the electron in hydrogen atom.

4+1=5

and engineering of the Or and the contract of the contract of

Draw the proper diagram of p-orbitals and d-orbitals of an atom. Write the values of all the quantum numbers for an atom when n=3. 3+2=5

- (b) Define electronegativity and deduce the expression for Pauling electronegativity scale. Calculate the electronegativity of carbon atom following Allred-Rochow's approach. (Covalent radius of carbon atom is 0.77 Å) 1+2+2=5
- (c) Discuss Heitler-London approach of valence bond theory.

Or

- (i) What is solvation energy? Discuss the mechanism of dissolution of an ionic solute in a polar solvent.
- (ii) Calculate the formal charge of P and H in PH₃.
- 4. Answer the following questions (any three):

10×3=30

5

3

2

(a) (i) What are the factors that affect ionization energy? Discuss its periodic trend. Why does successive ionization enthalpy of atom of an element increase immensely? 1+2+2=5

(ii)	State Slater's rule. Calculate	the
	effective nuclear charge at	
	periphery of chromium atom.	3+2=5

- (i) Draw Lewis dot picture for NO and (b) CO_3^{2-} .
 - (ii) Give a neat molecular orbital diagram of No. Identify HOMO and LUMO in this diagram. Is it possible to obtain an N2 molecular ion? 3+1+1=5 Justify it.
 - (iii) What is non-bonding molecular orbital? Explain it with appropriate example.
- Explain the terms 'radial' and functions 'angular' wave for hydrogen atom. Draw radial probability distribution curve for hydrogen atom when n=2. 3+2=5
 - (ii) What are the two basic postulates of VSEPR theory? Is it possible to give suitable explanation for the shape of PCl₃F₂ molecule by VSEPR theory? Elaborate your 2+3=5answer.
- (i) State and explain Hund's rule of 2 maximum multiplicity.

		electronegativity change	
	in sp , sp^2	and sp3 hybridization	?

3

- (iii) Apply molecular orbital theory to CO molecule.
- (iv) Describe the theory involved in estimation of Fe2+ ion in a given solution of unknown strength.

20A-4500/595

2

CHEMISTRY

(Honours)

Paper: CHE-HC-1026

(Physical Chemistry—I)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following as directed: 1×7=7
 - (a) From kinetic gas equation, show that PV = constant for an ideal gas at constant temperature.
 - (b) A gas can be liquefied, when

(i)
$$T > T_c$$
; $P = P_c$

(ii)
$$T < T_c$$
; $P < P_c$

(iii)
$$T < T_c$$
; $P > P_c$

(iv)
$$T = T_c$$
; $P < P_c$

(Choose the correct option)

- (c) Define vapour pressure of a liquid.
- (d) In a cubic crystal, there are C_4 axes of symmetry, C_3 axes of symmetry and six C_2 axes of symmetry.

(Fill in the blanks)

- (e) Explain why non-stoichiometric form of NaCl is yellow in colour.
- (f) Explain why pH of 1×10^{-8} mol dm⁻³ hydrochloric acid solution is not 8.
- (g) An aqueous solution of Na₂CO₃ is basic. Explain.
- 2. Answer the following questions: 2×4=8
 - (a) Define mean free path of a gas. How does mean free path of a gas vary with temperature and pressure?
 - (b) Give a qualitative idea about the structure of water.
 - (c) State the symmetry elements present in the following molecules:

H₂O; C₆H₆

(Continued)

- (d) The pH value of a solution containing equimolar concentrations of a weak acid and its salt is 5.0. Calculate the K_a value of the weak acid.
- 3. Answer any three of the following questions:

5×3=15

- (a) Derive the van der Waals' equation for a gas. Explain why van der Waals' equation cannot be considered as a generalized equation of state for real gases.
- (b) What is critical state of a gas? Derive the expressions for critical constants in terms of the van der Waals' constants.
- (c) Derive the Bragg's equation. In an experiment on a crystal using X-rays of wavelength 10⁻¹⁰ m, the value of angle of incidence for the first-order reflection was found to be 30°. Calculate the interplanar distance of the crystal.
- (d) For a weak monobasic acid, show that the degree of ionization at a given temperature is inversely proportional to the square root of the initial concentration of the acid. Give the expressions for dissociation constants of carbonic acid.

- (e) Define solubility product of a sparingly soluble salt solution. Give the conditions for precipitation in terms of solubility product. 50 mL of $0.01 \text{ mol dm}^{-3} \text{ AgNO}_3$ solution is mixed with 50 mL of $0.001 \text{ mol dm}^{-3}$ aqueous NaCl solution. Predict whether AgCl will be precipitated or not. Given $K_{\rm sp}({\rm AgCl}) = 1.7 \times 10^{-10}$.
- 4. (a) Answer either [(i) and (ii)] or [(iii), (iv) and (v)]:
 - (i) Give the postulates of kinetic molecular model of a gas. On the basis of these postulates, derive the kinetic gas equation. 3+4=7
 - (ii) Two flasks A and B have equal volumes. Flask A contain H₂ gas at 300 K, while flask B contains equal mass of C₂H₆ gas at 900 K. If both the gases behave ideally, answer the following:
 In which flask the molecules will have higher average speed and how many times than the average speed

(iii)	Derive an expression for root-mean-				
	square speed of gas molecules from				
	the expression	for	Maxwell		
	distribution of molecular speeds of				
	the gas.				

- (iv) Show that root-mean-square speed of hydrogen gas is four times that of oxygen gas at the same temperature.
- (v) Derive an expression for reduced equation of state for any substance.State the law of corresponding states.3+1=4
- (b) Answer either [(i), (ii) and (iii)] or [(iv), (v) and (vi)]:
 - (i) How does viscosity of gas differ from that of liquid?
 - (ii) Describe a method with theory commonly used for the measurement of viscosity of a liquid.
 - (iii) What are liquid crystals? Give the structural difference between smectic and nematic liquid crystals.

 Give two applications of liquid crystals.

 1+2+1=4
 - (iv) Define the terms—symmetry element, plane of symmetry and centre of symmetry.

3

3

3

2

of the other?

(v) What are Bravais lattices? How can the following crystal systems be characterized?

Cubic; orthorhombic

Give one example each of these two crystal systems.

(vi) What are Schottky and Frenkel defects? Give example of each of these two defects.

- (c) Answer either [(i), (ii) and (iii)] or [(iv), (v) and (vi)]:
 - (i) Define pH of a solution. Give the limitations of pH scale. Calculate pH of a solution obtained by mixing 50 mL 0·1 mol dm⁻³ HCl solution with 50 mL 0·2 mol dm⁻³ NaOH solution at 298 K. 1+1+3=5
 - (ii) Discuss briefly about the following:

 Applications of buffers in qualitative analysis of salt sample.
 - (iii) Obtain an expression for hydrolysis constant for the hydrolysis of CH₃COONH₄ salt.
 - (iv) What are acid-base indicators? Give examples. Discuss briefly the Ostwald's theory of acid-base indicators. 1+1+3=5

(v) State with reasons, what indicators you would choose for the following titrations:

NaOH vs. CH₃COOH; Na₂CO₃ vs. HCl 3

(vi) Calculate the solubility of Mg (OH)₂ in pure water at 298 K. Given $K_{\rm sp}$ for Mg (OH)₂ at 298 K is $1\cdot20\times10^{-11}$.

* * *

20A/596

(Continued)

3